Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement
نویسندگان
چکیده
Ternary Pt-Ru-Ni deposits on glassy carbon substrates, Pt-Ru(Ni)/GC, have been formed by initial electrodeposition of Ni layers onto glassy carbon electrodes, followed by their partial exchange for Pt and Ru, upon their immersion into equimolar solutions containing complex ions of the precious metals. The overall morphology and composition of the deposits has been studied by SEM microscopy and EDS spectroscopy. Continuous but nodular films have been confirmed, with a Pt ÷ Ru ÷ Ni % bulk atomic composition ratio of 37 ÷ 12 ÷ 51 (and for binary Pt-Ni control systems of 47 ÷ 53). Fine topographical details as well as film thickness have been directly recorded using AFM microscopy. The composition of the outer layers as well as the interactions of the three metals present have been studied by XPS spectroscopy and a Pt ÷ Ru ÷ Ni % surface atomic composition ratio of 61 ÷ 12 ÷ 27 (and for binary Pt-Ni control systems of 85 ÷ 15) has been found, indicating the enrichment of the outer layers in Pt; a shift of the Pt binding energy peaks to higher values was only observed in the presence of Ru and points to an electronic effect of Ru on Pt. The surface electrochemistry of the thus prepared Pt-Ru(Ni)/GC and Pt(Ni)/GC electrodes in deaerated acid solutions (studied by cyclic voltammetry) proves the existence of a shell consisting exclusively of Pt-Ru or Pt. The activity of the Pt-Ru(Ni) deposits toward methanol oxidation (studied by slow potential sweep voltammetry) is higher from that of the Pt(Ni) deposit and of pure Pt; this enhancement is attributed both to the well-known Ru synergistic effect due to the presence of its oxides but also (based on the XPS findings) to a modification effect of Pt electronic properties.
منابع مشابه
Electronic Modifi cation Effects Induced by Fe in Pt-Ru-Fe Ternary Catalyst on the Electrooxidation of CO/H2 and Methanol
Electronic Modifi cation Effects Induced by Fe in Pt-Ru-Fe Ternary Catalyst on the Electrooxidation of CO/H2 and Methanol Taeyoon Kim, Koichi Kobayashi 2* , Tetsuo Take 2 and Masayuki Nagai 2 1 Department of Chemistry and Energy Engineering, Tokyo City University (Tokyo 158-8557, JAPAN) 2 Research Center for Energy and Environmental Science, Advance Research Laboratory, Tokyo City University (T...
متن کاملCombinatorial optimization of ternary Pt alloy catalysts for the electrooxidation of methanol.
We report the combinatorial and high-throughput optimization of improved ternary Pt alloy electrocatalysts for the oxidation of methanol for use in direct methanol fuel cell (DMFC) anodes. Following up on the discovery of a ternary Pt20Co60Ru20 catalyst with significantly improved electrocatalytic activity for methanol oxidation over standard Pt-Ru catalysts, we optimize the electrocatalytic ac...
متن کاملPt-Ni and Pt-M-Ni (M = Ru, Sn) Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review
In view of a possible use as anode materials in acidic direct alcohol fuel cells, the electro-catalytic activity of Pt-Ni and Pt-M-Ni (M = Ru, Sn) catalysts for methanol and ethanol oxidation has been widely investigated. An overview of literature data regarding the effect of the addition of Ni to Pt and Pt-M on the methanol and ethanol oxidation activity in acid environment of the resulting bi...
متن کاملDevelopment of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol
This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350°C. Four different compositions were homemade: C/Pt(60)Sn(10)Ni(30), C/Pt(60)Sn(10)Ni(20)Ru(10), C/Pt(60)Sn(10)...
متن کاملFacile synthesis of continuous Pt island networks and their electrochemical properties for methanol electrooxidation.
A two-dimensional continuous Pt island network was successfully synthesized by pulse-potentiostatic electrodeposition on a flat silicon substrate, which showed markedly enhanced catalytic activity toward methanol electrooxidation and high CO tolerance, probably due to the synergistic effect of the Pt island catalyst and surrounding SiO(2) surface layer.
متن کامل